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Abstract Suppose that you are looking for visual targets in a
set of images, each containing an unknown number of targets.
How do you perform that search, and how do you decide
when to move from the current image to the next? Optimal
foraging theory predicts that foragers should leave the current
image when the expected value from staying falls below the
expected value from leaving. Here, we describe how to apply
these models to more complex tasks, like search for objects in
natural scenes where people have prior beliefs about the num-
ber and locations of targets in each image, and search is guided
by target features and scene context.Wemodel these factors in
a guided search task and predict the optimal time to quit
search. The data come from a satellite image search task.
Participants searched for small gas stations in large satellite
images. We model quitting times with a Bayesian model that
incorporates prior beliefs about the number of targets in each
map, average search efficiency (guidance), and actual search
history in the image. Clicks deploying local magnification
were used as surrogates for deployments of attention and,
thus, for time. Leaving times (measured in mouse clicks) were
well-predicted by the model. People terminated search when
their expected rate of target collection fell to the average rate
for the task. Apparently, people follow a rate-optimizing strat-
egy in this task and use both their prior knowledge and search
history in the image to decide when to quit searching.

Keywords Visual search . Foraging . Search termination .
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In a classic visual search task in the laboratory, an observer
looks for a target item among some number of distractor
items. The single target is present or absent, and a search ends
when the target is found or the observer abandons the search,
declaring the target to be absent. This all occurs over the
course of a few hundred to a few thousand milliseconds. A
great deal is known about such searches (for some recent
reviews, see Chan & Hayward, 2013; Eckstein, 2011; Wolfe,
2014; Wolfe, Horowitz, & Palmer, 2010). For instance, we
know that the efficiency of these searches falls on a continu-
um, as indexed by the slope of the function relating RT to set
size (the number of items on-screen; Wolfe, 1998). The rela-
tionship of target to distractor items is a powerful determinant
of search efficiency (Duncan & Humphreys, 1989). If the
target differs from a homogeneous set of distractors on the
basis of a basic attribute like color or motion, search will be
extremely efficient. Indeed, the target will Bpop-out^ indepen-
dent of the number of distractors (Egeth, Jonides, & Wall,
1972). If the target and distractors share all their features,
differing only in their arrangement, search will be quite inef-
ficient, even if the items are clearly resolvable in peripheral
vision (Bergen & Julesz, 1983), perhaps reflecting serial de-
ployment of attention from item to item (Kwak, Dagenbach,
& Egeth, 1991). If a basic feature of the target can give partial
information, attention will be guided by that information. For
example, if the target, when present, is green, and only half the
distractors are green, then attention will be guided to green
items (Egeth, Virzi, & Garbart, 1984), and the efficiency will
be double what it would have been without the color informa-
tion. Hence, the idea of Bguided search^ (Wolfe 1994, 2007,
1989) with a limited set of attributes available to guide (Wolfe
and Horowitz, 2004).

This body of research will tell you something about
searching for your car in the parking lot (if it is a red Prius,
don’t waste time attending to blue cars) or the bottle opener in
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the kitchen drawer (this will be inefficient due to a lack of a
salient defining feature, not to mention Bcrowding^
effects;(Balas, Nakano, & Rosenholtz, 2009). But let us con-
sider a different search task. Suppose you are tasked with
searching for military vehicles in satellite images of the tense
border between two countries. This search differs in a variety
of important ways from classic, laboratory search.

1) In a continuous scene, it is going to prove essentially
impossible to measure the set size (Neider & Zelinsky,
2008; Wolfe, Alvarez, Rosenholtz, & Kuzmova, 2011),
rendering the idea of search efficiency problematic.

2) Even if we could count the items, we do not know how
many items are processed in a single fixation. The eyes
move 3–5 times per second, and it is tempting to assume
that each fixation catalogs a target/nontarget decision
about a single item. However, in simple searches, at least,
items are processed at much higher rate. Multiple items
might be processed in parallel during each fixation. Serial
attention might visit multiple items on each fixation.
Indeed, both parallel processing and serial selection prob-
ably characterize search (Wolfe, 2003).

3) The number of targets is unknown, meaning that, even if
you find a target, you still do not know, for certain, that it
is time to end the search of this image.

4) The search is guided, but not merely by basic attributes of
the target. The structure of the scene tells the searcher
where targets are more or less likely (very few vehicles
in trackless wilderness or in the middle of lakes; Ehinger,
Hidalgo-Sotelo, Torralba, & Oliva, 2009; Torralba, Oliva,
Castelhano, & Henderson, 2006; Võ & Wolfe, 2015).

5) The tasks have a more striking learning component.
People are trained to do these complex tasks, and one
manifestation of that learning is that experts learn where
not to look (Kundel & La Follette, 1972; Wooding,
Roberts, & Phillips-Hughes, 1999).

6) Finally, each stimulus here will be searched for minutes
rather than for a fraction of a second.

The purpose of this paper is to ask how people perform
tasks like the one described here; tasks that can be called
Bextended search^ tasks. These tasks include search in over-
head imagery as well as other prolonged search tasks, such as
search for signs of disease in radiology or search for cracks in
the examination of an airplane. A major difference between
these tasks and more classic, fast visual search tasks is the role
of higher level knowledge and decision-making processes.
Extended search tasks are slow and can involve rich, complex
natural images, so the observer’s top-down knowledge and
expectations about the images and task are an important com-
ponent of their search in these images.

With difficult, multiple target search in a complex scene,
the decision to end search of the current image becomes one of

the most interesting problems. After all, since it is hard to find
everything, one could keep looking for a long time, but there
are many more images to search. When have the diminishing
returns diminished to the point where it is time to move on?

The topic of search termination has been studied in human
visual searches having zero or one target (Chun &Wolfe, 1996;
Cousineau & Shiffrin, 2004; Moran, Zehetleitner, Müller, &
Usher, 2013;Wolfe, 2012). Quitting times in searches with mul-
tiple targets have been studied extensively in the animal foraging
literature, where it is described as the Bpatch-leaving^ problem
(Stephens, Brown, & Ydenberg, 2007; Stephens & Krebs,
1986). If you are grazing in this spot or sipping nectar from
flowers on this plant, when should you leave for the next patch
of grass or the next flowering plant? More recently these rules
have been applied to human searches for visual stimuli (Wolfe,
2013), information (Pirolli & Card, 1999), or even the contents
of one’s own memory (Hills, Todd, & Jones, 2015). One of the
earliest and most influential quitting-time models in the animal
literature is the marginal value theorem (MVT) proposed by
Charnov (1976). This theorem considers the problem of an an-
imal foraging for food in an environment where food is random-
ly distributed in many separate patches, and assumes that the
animal’s goal is to maximize its rate of food intake. While feed-
ing in a patch, the animal gradually exhausts the food supply,
and the intake rate in that patch drops. However, traveling to a
new patch imposes a cost: It takes time, and no food can be
collected while traveling between patches. The optimal strategy
is to leave the patch when the expected rate from traveling to a
new patch exceeds the expected rate from staying in the current
one. According toMVT, this occurs when the rate of food intake
in the current patch falls to the average rate for the environment
(see Fig. 1).

This theory is appealing because it claims that the optimal
patch-leaving time can be computed from a single, easily ob-
served variable: the current rate of food intake in the patch.
There are some models of search for which it makes sense to
assume a continuous rate. For example, limited capacity and
decision integration models of search propose that the whole
visual field is processed in parallel, and target detection is
actually a signal detection problem across various locations
in the visual field (Palmer, 1995; Palmer, Verghese, & Pavel,
2000; Townsend, 1971;). The gradual accumulation of infor-
mation across the visual field could be represented as a
smooth, continuous Bintake rate^ curve. However, computing
this rate is not so straightforward for tasks that involve slow,
serial search for discrete targets. When a forager is collecting
individual items (pieces of fruit, prey animals, tumors, military
vehicles, etc.), the intake curve looks more like the step func-
tion in Fig. 1 (dotted line): The intake rate is zero while the
observer is searching, then jumps sharply when the searcher
finds a target. It wouldn’t make sense for the searcher to leave
the patch shortly after the instantaneous rate falls below the
average – the instantaneous rate in a patch can be zero for a
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significant time between target detections. As a proxy, the
searcher might compute the time since it last found a target
and use that as a measure of the current rate; it would leave the
patch whenever the time since last target exceeded a threshold
determined by the average rate in the environment. This
Bgiving up time^ (GUT) rule does seem to explain foraging
behavior in certain situations (Krebs, Ryan, & Charnov 1974).

However, there are serious problems with the giving up time
rule and other similar implementations of the marginal value
theorem. In most searches, the time between targets is somewhat
noisy: It’s randomly distributed around an expected value. An
ideal forager should make decisions based on the expected rate,
not the experienced rate. Also, a forager might be expected to
learn about current patch quality from the success or failure of its
ongoing search in the current patch: A patch where many targets
are found quickly is probably a rich patch and might be worth
spending more time in. To some extent this is captured by MVT
(the rich patch should have a higher instantaneous rate, so a
forager should stay there longer), but it’s not clear that the giving
up time is actually an optimal leaving strategy. In fact, simula-
tions show that it is not: In environments where patch quality
varies and the experienced rate of target collection is noisy, the
giving up time strategy proposed byMVT is not optimal and can
bemade to perform arbitrarily badly, depending on the amount of
variation in the environment (Green, 1980, 1984; McNamara,
1982; Oaten, 1977;).

As Oaten (1977) points out, MVT is flawed because it as-
sumes that stochastic aspects of the foraging task balance out
and the forager can make good decisions based on averages. In
fact, an optimal forager should reason about the foraging task
probabilistically. Various frameworks for this have been pro-
posed, including the original stochastic foraging model of
Oaten (1977), but Bayesian optimal foraging models (Green,
1980; McNamara, Green, & Olsson, 2006; McNamara &
Houston, 1985) are probably the easiest to generalize.

According to these approaches, leaving decisions are made
based on the potential value of the patch: The optimal leaving
time is when the expected rate, not the observed rate, drops
below the average for the environment (McNamara, 1982). By
Bexpected rate^ we mean an estimate based on the forager’s
belief about how many targets are in the patch and how easy
they should be to find. These beliefs are updated in a Bayesian
fashion as the forager searches for targets. For example, suppose
that you come across a garage sale or moving sale where some-
one has an assortment of household items displayed. On first
glance, it looks quite uninteresting, so you decide to forage
briefly because your expected rate of return is low. However, if
you find a surprising treasure, the expected value goes up, and
you should search longer.

The difference between the MVT and potential value ap-
proaches can be illustrated using Fig. 1. In this graph, time in a
patch is shown on the x-axis and targets collected on the y-axis,
and the dotted line shows an individual forager collecting six
targets in the patch. Since targets are discrete objects, they appear
as steps: The width of the step indicates the time elapsed be-
tween collecting one target and the next. The solid straight line
represents this forager’s average rate of target collection, and
according to MVT, the forager should quit searching the patch
when its instantaneous rate falls below this average rate. The
instantaneous rate is one over the time elapsed since collecting
the last target, or the slope drawn from the corner of the current
step to the last one. An MVT forager would use this slope to
decide when to leave the patch. On the other hand, a potential
value forager would try to model the average expected rate of
target collection, shown by the solid curved line. Potential value
foragers would use the same leaving time threshold – they
would quit when their current rate fell below the average for
the task – but they would use the slope of their expected rate
(solid curve) instead of their experienced rate (dotted line) to
decide if their current rate was below that threshold.

Fig. 1 Illustration of optimal foraging theory. The solid line represents an
idealized forager’s intake over time. During the Btravel time^ period, the
forager is moving to the patch, and intake is zero. Once arriving in the
patch (Bforaging time^), intake increases rapidly at first, then gradually
declines as the patch is exhausted. If the goal is to maximize rate of target
collection, the optimal time to leave the patch is when the intake rate falls
to the average in the environment (bold diagonal line); this is the point

where the intake curve is tangent to the average rate. But a forager doesn’t
actually experience this solid-line curve while foraging in a single patch;
instead, it collect discrete targets at random intervals, as represented by
the dotted line. An optimal foragermust infer the expected rate (solid line)
and optimal leaving time from its experienced rate (dotted line) and ex-
pectations about the patch
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Target-present/target-absent search is another example that
can illustrate the difference between the MVT and potential
value approaches (discussed in more detail in McNamara &
Houston, 1985). In this kind of task, there can only be one
target per patch, but not all patches have a target, so the forager
must either find the target or give up the patch as empty and
move on (for simplicity, we’ll assume that search is random
with replacement: The forager can’t prioritize the locations
most likely to have a target or search the entire patch exhaus-
tively). Bayesian foragers would start with some initial beliefs
about how likely the patch was to have a target and update that
belief while searching. After every unsuccessful search at-
tempt, they would be slightly more inclined to think the patch
was empty. The optimal forager would leave the patch imme-
diately after finding a target (because at that point the patch is
guaranteed to be empty and its potential value has become 0),
or when the likelihood that the patch was empty was so high
that the expected rate from staying was lower than the expect-
ed rate from leaving (exactly where this threshold occurs de-
pends on the travel time cost of leaving a patch and traveling
to the next one). A forager using a simple marginal value
theorem approach, on the other hand, would quit the patch
when the time since last finding a target exceeded the mean
rate in the environment. Since the simple marginal value ac-
count would not include the understanding that a present/
absent search is over when the observer finds the target, this
would lead to the clearly incorrect prediction that the average
target-present trial will actually be slower than the average
target-absent trial, since even after finding the target foragers
must continue searching the empty patch for a length of time
equal to the mean time between targets in the environment in
order to convince themselves that the patch is empty.

In the potential value framework, determining the optimal
leaving time in a foraging task requires modeling the forager’s
mental representation of the task. Leaving time is going to
depend on the potential value of a patch, but potential value
can’t be measured directly. It is based on the forager’s current
expectations. In turn, those expectations are based on the for-
ager’s prior beliefs about patch quality, the history of search in
the patch, and the actual probability of finding or not finding a
target on each search attempt. This is easy enough to compute
for simple cases (e.g., if the patch contains a known number of
Bitems^ and these are searched in a random-with-replacement
fashion), and most of the foraging literature has focused on
these types of cases (e.g., Green, 1984; Oaten, 1977). Cain,
Vul, Clark, and Mitroff (2012) extended this analysis to the
case where there could be a small number of targets present in
any display. The specific number in a display was drawn from
a distribution of possible, small numbers of targets and ob-
servers changed their behavior in response to the manipulation
of that distribution. However, as noted above, real-world
search tasks, such as search for objects in scenes, are more
complex. We can’t count the number of items in the scene nor

do we know how many items are processed in a single fixa-
tion. We can be reasonably sure that people start the search
with some prior knowledge on how likely the target is to be in
the scene. Their search will be guided strategically to probable
locations and/or to things that share basic features with the
target (Ehinger, et al., 2009; Wolfe, 2007).

In this paper, we use data from a novel satellite imagery
search task to motivate a general search termination model
that can be applied to both guided and random search tasks.
We assume that people quit searching when their expected rate
of target collection drops below a threshold. That expected
rate is derived from prior beliefs about how many targets are
likely to be in an image and the observer’s sense of how
difficult, on average, the search task should be. We also as-
sume that people update their expectations during search in a
Bayesian fashion, decreasing their expectations if the rate of
target collection is slower than expected, or increasing their
expectations if they find targets more quickly than expected.

The task

In our satellite imagery search task, the targets are gas stations.
Gas stations were chosen because they are recognizable from
above with a little training, most people have some sense of
where gas stations are most likely to appear in images (e.g., near
major roads), and ground truth labels to denote which buildings
are or are not gas stations are reasonably easy to obtain. At the
scale at whichwe are presenting images, the gas stations are very
small, so participants search each image using a magnifier inter-
face, shown in Fig. 2. Since a gas station cannot be positively
identified without the magnifier, we can use the magnifier as a
rather literal Bspotlight of attention^ (Posner, Snyder, &
Davidson, 1980); most conveniently, a spotlight that we can
track. The magnifier allows us to record the locations searched
in each map and makes it easier to fit the task into a Bayesian
optimal foraging framework because we know what proportion
of the map is captured in each magnified view. Search for gas
stations in these images is a complex, guided search task similar
to search in real-world scenes: Participants have prior beliefs
about the quality of each map or Bpatch^ (e.g., urban views
should have more gas stations than rural ones), and they can
search strategically, using their knowledge of what gas stations
look like and where they are most likely to occur (e.g., more
likely at intersections and unlikely in open fields).

In addition to investigating leaving times, we investigated
whether different magnification interfaces have any effect on
search. We compared an interface in which the magnified
view was shown to the side of the overview map (Bside-by-
side^) to interfaces in which the magnified view appeared in
the map, either overlapping the zoom location (Bmagnifying
glass^) or just beside it (Boffset^). There has been some pre-
vious work looking at how different magnification interfaces
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affect visual search. Zhao, Rau, Zhang, and Salvendy (2009)
found that people were able to complete a word search task
more quickly when the magnified view appeared at the mag-
nified location in the word search display (equivalent to our
Bmagnifying glass^ condition) than when it appeared off to
the side of the display (as in our Bside-by-side^ condition).
However, it is not clear whether these results extend to other
types of visual search tasks. To anticipate our results, in this
experiment, the type of magnifier did not have a significant
effect on the results.

Experiment 1

Method

Participants

Sixty-two people participated in a web-based experiment on
Amazon Mechanical Turk. Participants were based in the
United States and had a good track record on the Mechanical
Turk site (at least 100 HITs completed and an acceptance rate of

at least 95%). Participants gave informed consent before
starting the task. Payment was performance based:
Participants received a base payment of $1 if they found at least
10 gas stations and a bonus of $0.10 per gas station for every
gas station after the first 10.

Stimuli

The stimuli were 50 satellite view images from Google Maps.
The overview image was 1,000 pixels square with a zoom
level of 16, which corresponds to a real-world area of about
1.15 square kilometers. Views were chosen from 10 U.S. cit-
ies (five views per city). The magnified view was 200 pixels
on each side; within this window the zoom level could be
increased from level 16 to 19 (8× magnification).

The full overview images contained 0–10 gas station tar-
gets. Gas stations were identified by searching for Bgas
station^ on each map and then using Google Maps’
Streetview imagery to verify each result. We also manually
searched each image to identify gas stations which appeared in
the map but weren’t included in the Google search results.

Fig. 2 Interface and stimuli for the search task. (a), (b), and (c) show the three magnification interfaces used for the task. (d) shows a section of the
overview map, slightly zoomed in for illustration purposes. There are two gas stations in this section of the map. Map imagery © Google, Digital Globe
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Design and procedure

Participants were randomly assigned to one of the three mag-
nifier conditions: side-by-side, magnifying glass, and offset
magnifying glass. At the start of the experiment, participants
were asked to fill out a short demographic survey and were
given instructions on the magnifier interface and shown ex-
amples of gas station targets. Participants were told the max-
imum number of trials (50) but were not given information
about the number of targets per trial. The 50 overview images
were shown in random order.

On each trial, participants were shown one overview image
and asked to find the gas stations. The interface for a single
trial in each condition is shown in Fig. 2. Participants could
zoom into a part of the image by left-clicking on it. The + and
– keys on the keyboard were used to increase and decrease the
zoom level within the zoom through four possible zoom
levels: 1×, 2×, 4×, and 8× magnification. The magnifier views
could be closed by right-clicking within the zoomwindow. To
mark a gas station, participants would center it in the zoom
window and press the X key on their keyboard. They were
then asked to rate their confidence that the building was a gas
station on a scale from 1–9. The location was then marked,
and participants were given feedback on their choice – a green
marker meant that the location was a gas station; a red marker
meant that it was not. Whenever the participant correctly
marked a gas station, 10 points were added to a score total
shown beside the map; this was included so participants could
keep track of how many stations they had found so far and
how much they would be paid. The map images were served
from Google Maps and operations such as zooming,
recentering, and marking were handled by Google Maps API.

Participants pressed a button to end each trial. At this point,
participants were shown any gas stations they had missed in
the current view. The feedback was intended to help partici-
pants learn what the targets look like and to give them an
accurate count of the number of gas stations in each previous-
ly seen map so they could learn how many targets to expect in
an average map in this task. After each trial, participants had
the option to proceed to the next trial, or quit the task for now,
which would pause the experiment clock. Participants could
resume the task at a later time or, if they had found the min-
imum required number of targets, quit the task entirely, submit
their work, and receive their bonus. Participants were not re-
quired to complete all 50 maps before quitting. There were no
time limits in the trials, but participants were required to finish
the task within 72 hours of starting it.

BHow many gas stations in this satellite image?^ task

To estimate observers’ initial expectations for the number of
gas stations in each satellite view, we ran a secondMechanical
Turk task in which we showed each image at the lowest zoom

level and asked 10workers to guess the number of gas stations
in the view without actually searching with the magnifier.
Workers were told that it was possible for an image to have
no gas stations but were not given any other range informa-
tion. Workers were paid $0.01 per image and a $0.02 bonus
for correct guess; they did not receive any feedback about their
guesses during the task. The worker requirements and consent
process for this task were the same as for Experiment 1. The
averages of the guesses were moderately well correlated with
the true numbers of targets in these images (by-images corre-
lation: r = 0.55), which confirms that untrained participants
have reasonable intuitions about the distribution of gas sta-
tions in these satellite images.

Results and discussion

We dropped 15 trials over 60 minutes in length (one supposes
the observers went elsewhere, leaving the program running),
86 trials with no clicks recorded, and four trials which had
recorded click locations incorrectly, leaving 1,541 trials. The
percentage of trials dropped was slightly higher in the side-by-
side condition (8% vs.5% in the other two magnifier condi-
tions). Some of this difference is due to a single participant in
the side-by-side condition who had 23 out of 50 trials dropped
and was dropped entirely from the remaining analyses. The 61
Mechanical Turk participants contributed 5–50 trials each
(mean 24, median 22).

We compared search speed and accuracy across the three
magnifier conditions in a by-subjects analysis, shown in
Fig. 3. Because of the random assignment of conditions and
the fact that participants were not required to complete all the
trials, there were an unequal number of participants and trials
across the three magnifying conditions: 23 participants (535
trials) in the side-by-side condition, 17 participants (487 trials)
in the magnifying glass condition, and 21 participants (492
trials) in the offset magnifying glass condition. Our measures
of accuracy across conditions were precision (the proportion
of targets found in each trial), recall (the proportion of partic-
ipants Btarget^marks that were correct), and F score (an over-
all measure of accuracy equal to (2 * precision * recall)/(pre-
cision + recall)). Measures were computed within a trial then
averaged across trials for each participant. There was no sig-
nificant difference in the total time per map,F(2, 58) = 1.5, p =
.23, number of search clicks per map, F(2, 58) = 0.32, p = .72,
rate of clicks, F(2, 58) = 0.13, p = .88, average recall, F(2, 58)
= 2.28, p = .11, average precision, F(2, 58) = 0.27, p = .76, or
F score, F(2, 58) = 0.09, p = .92. The significance values did
not change when only the participants who did more trials (at
least 10 or at least 20) were included in the analysis. Since the
three magnifier conditions did not seem to have any signifi-
cant effect on search in these maps, we collapsed across mag-
nifier conditions for all of the following analyses.
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Leaving time analysis

First, we looked at whether participants used a giving up time
(GUT) strategy to decide when to quit searching a map. The
time since last finding a target serves as a measure of the
instantaneous rate of target collection; according to marginal
value theorem, participants should quit when their rate falls
below the average for the whole task, or when their time since
last target exceeds the average in the task. The average for the
task is computed as the final total of all targets found divided
by the total time participants spent in the task. Importantly, this
includes the Btravel time,^ the dead time between the final
click on one map and the appearance of the next. A plot of
the giving up times (time between finding the last target and
leaving the map) in our study is shown in Fig. 4. If participants
used a giving up time strategy, we would expect these times to
be clustered around the average time/target in this task, but
this is not the case – giving up times are quite variable, but
generally they are shorter than the average time/target. This
means that people in this task are not using a simple giving up
time strategy: They do not wait until their time since last target
exceeds the average time/target.

Next, we looked at whether participants used a potential
value strategy to decide when to leave eachmap. According to
this theory, the optimal time to quit a patch is when the

expected rate from staying (E1) falls below the expected rate
from leaving (E0):

E1 < E0 ð1Þ

The expected rate from leaving a patch is the average
rate of target collection (targets/time) in the task environ-
ment. The expected rate from staying in a patch varies
with the time spent in the patch (t): it’s E[X(t)], the ex-
pected targets collected at time t, over the total time
expended, which is the time in the patch (t) plus the travel
time to get to that patch (τ).

E1 ¼
E X

�
t

h �i
t þ τ

ð2Þ

The expected targets at time t depends on the initial number
of targets and the nature of the search task. We use the number
of clicks on the map as our unit of Btime^ (t and τ) rather than
using a standard measure of time like seconds because it al-
lows us to fit the search task more easily into a probabilistic
model. This requires converting the travel time between maps
(τ) from seconds to clicks. Since the average loading time
between maps was 5 seconds and the average interclick inter-
val during search (averaged over all clicks made in the
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experiment) was 2.5 seconds, we consider travel time τ equiv-
alent to 2 clicks.

In visual search tasks where the target doesn’t immediately
pop out, it is likely that people process only part of the image
at a time. This is often described as a series of deployments of
attention over the image. Each deployment selects some sub-
set of items to process and to compare to some target template
(Wolfe, 2007). Extending this kind of model to search in nat-
ural scenes is difficult, since for purposes of search it’s not
clear exactly what constitutes an Bitem^ in a scene. It is pos-
sible that some groups of objects are processed together as
single items, and it is possible that an item (e.g., a face) might
be composed of other items (eyes, nose, etc.; Wolfe et al.,
2011). Alternatively, one could consider somewindow around
the point of fixation as a surrogate for the item. Thus, as
people move their attention around the scene, they would
sample a series of windows rather than items per se.
However, modeling these from fixations is a difficult problem,
since it’s not clear how large the window should be; it may
depend on the specific search task and how difficult the target
is to see against its background.

In the present task, the magnifier provides a useful surro-
gate for the item or the window around fixation. For the pur-
poses of modeling search in our images, we can use the por-
tion of the scene shown in the magnified view as the equiva-
lent of an item. On each search click, the participant can see a
fixed proportion of the map (1/ω) in the zoomed-in view.
Thus, we treat that sample as one item from a pool ofω items.
(We should note that, in order to simplify the model and re-
duce the number of free parameters, we have assumed that
search windows have a fixed size and do not overlap. This
was not entirely true in our experiment – people could change
the zoom window size during a trial and sometimes did select
overlapping regions – but it is much simpler and not dramat-
ically incorrect to assume a constant window size throughout.)
We can compute what cumulative proportion of the map has
been searched after each click and how many targets the par-
ticipant should have found assuming various search strategies.
For example, if participants were searching the map

exhaustively from left to right and top to bottom, we could
model that as random-without-replacement selection from a
set ofω items and determine E[X(t)] for some initial number
of targets (N) in the display: E[X(t)] = Nt/ω. If a participant
had clicked on half the locations (2t =ω), then they would be
expected to have found half of the N targets, on average.

However, in our task, people do not search randomly: they
prioritize the parts of the image that are most likely to be
targets. Returning to Fig. 2, you would not spend clicks on
the golf course, and you would be unlikely to spend many on
the areas that appear to contain only residential housing. Since
participants guide their attention and their clicks to areas
deemed most likely to contain gas stations and search those
areas first, their expected rate of target collection starts out
higher and falls off much faster than it would if search were
simply random.

The exact shape of that function depends on how efficient
the search task is. For example, in a very efficient Bpop-out^
search task, such as collecting red targets among green
distractors, people could collect all of the targets immediately:
Their expected rate would be one target per click until the
targets were exhausted, at which point their expected rate
would fall to zero. The gas station search task falls somewhere
in between this very efficient, perfectly guided search and a
random search.

It would be difficult to say, in theory, how efficient gas
station search should be, but we can estimate it directly from
our search data. We assume that people in our task have a way
of deciding which sections of the image are most likely to
contain targets, and that they generally search regions in order
from most to least likely, with some noise. We can estimate
search efficiency by looking at how the number of targets found
relates empirically to the proportion of the image searched. We
divide each image into a 25 × 25 grid (approximately the size of
the average zoomwindow), giving us a surrogate set size of 625
items/regions. Next, we make a histogram of all participants’
search clicks on that image, shown graphically in Fig. 5b, with
hotter colors indicating more clicks in that element of the 25 ×
25 grid. It can be seen that, in these images, search clicks cluster

Fig. 4 Boxplots of time between finding the last target and quitting a trial
("Giving Up Time") for each participant in Experiment 1. According to
MVT, people should quit when this time reaches their average time
between targets, indicated by the solid line. The median leaving times

(black dots) for most participants are below the average, which means
participants generally quit trials earlier than they should according to
MVT
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along main roads, lined with buildings. There is very little
search for gas stations in empty fields or near stretches of
limited-access highway. Now we can take the top N% of grid
elements and ask howmany targets fall in this area. If we sweep
from 0% to 100% of the grid, the resulting curve is shown in
Fig. 5c. Figure 5c is the average of these curves across all
images. The y-axis of this curve runs from zero to about four
gas stations because the average number of gas stations in our
set of images was about four. Naturally, there is some variation
in search speed across maps – gas stations can be found quickly
in some, while others require much greater scrutiny – but this
curve gives the average rate of target collection for this task.
From this curve, we can see that, even though this is a difficult,
slow task, participants were very efficient in terms of the pro-
portion of the image scrutinized. Once they had examined about
9% of the map area, on average, they would have found 90% of
the available gas station targets. This illustrates the very
Bguided^ nature of this search task. Participants were able to
use their understanding of scene context and their knowledge of
the rough visual features of the targets to guide their search to
the buildings most likely to be gas stations.

Knowing the expected rate of target collection allows a
forager to choose the optimal time to quit a guided search task.
It also allows a forager to refine their expectations about the
number of targets in a patch, since the expected rate also
depends on the number of targets in the patch. By comparing
the actual number of targets collected to the expected collec-
tion rates for different numbers of targets initially in the patch,
a forager can determine what target count is most probable.

How the expected rate of target collection varies with the
number of targets depends on how strongly guided the search
is. If search is completely random, the odds of finding a target
on each click is directly proportional to the number of targets
available: If the odds of finding a target on the first search
click is p in an image with one target, the odds of finding a
target on the first click in an image with 10 targets is 10p.
However, this is not quite correct for guided search: If the
odds of finding a target on the first search click is 95% in an
image with one target, the odds of finding a target on the first
click in an image with 10 targets is higher, but it's not 950%.
Understanding how the search expectations vary with the
number of targets in the image requires representing guided
search as a signal detection problem.

Let us assume that, when deciding where to click next on
each map, participants must make a two-alternative, forced-
choice decision about whether a region will contain a target or
not. This decision is based on a Btargetness^ signal that is
computed from local visual features that resemble the target
and spatial location information that suggests where a target is
most likely to be present. For example, if the search task is to
find blue cars in a parking lot scene, then image locations that
have blue colors and are in the bottom half of the image (not
the sky) are the most likely target locations. This targetness
signal probably wouldn’t be perfect for most search tasks. If
the signal is thresholded, then search actions (fixations or
clicks) guided by this targetness signal can be classified into
hits or false alarms according to whether or not they land on a
target. For example, in the car search task, the viewer’s first

Fig. 5 Estimating the rate of target collection in the map search task. (a)
Two example maps, red markers indicate gas stations. (b) Heatmaps
showing the distribution of search clicks in these maps, averaged over
all subjects. Pixels colored red are areas that were searched most
frequently; dark blue areas were search least frequently. (c) Cumulative

targets per area of the map searched, assuming search frommost-frequent
to least-frequent locations, averaged over maps with at least one target.
The solid line is the empirical curve from the heatmaps in (b); the dotted
line is the fitted curve used in modeling. Map imagery © Google, Digital
Globe and Orbis, Inc. (Color figure online)
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two fixations might fall on a blue mailbox and a blue car: The
former could be considered a false alarm and the latter a hit. In
fact, we can think of search efficiency as reflecting how well
target regions and distractor regions (meaning, regions which
do not contain a target) are separated by the targetness signal
(Wolfe, 2007). Again, for simplicity, we assume that regions
do not overlap and either are or are not targets.

We assume that the target regions and distractor regions
come from two overlapping normal distributions on this
targetness scale. In an easy guided search task, such as
finding a red dot among green, these distributions would
be very well separated. In a very difficult search task, such
as identifying cancer in a mammogram, the target and
distractor distributions may overlap quite a bit – this re-
flects the difficulty in determining at a glance whether a
given region in the image contains a target and guiding
attention to the most likely regions. Using the curve in
Fig. 5c, we can determine the amount of overlap between
targets and distractors in our task, and how efficiently peo-
ple were able to search these scenes. We scale this average
curve so that the maximum number of targets is one so we
can treat it as an ROC curve. An ROC curve plots the
percentage of hits in a two-alternative forced-choice task
against the percentage of false alarms. In this case, we treat
every search click that does not reveal a target as a false
alarm, since we assume that people search these images
selectively and only click on regions that have a reasonably
high probability of containing a target. (This broader def-
inition of Bfalse alarm^ includes the traditional false alarms
– patches that the observer clicked and then incorrectly
marked as targets – but these are only a small percentage
of the unsuccessful search clicks. In most cases, the ob-
server could identify a distractor patch as a distractor with-
out marking it.) We then fit a binormal function (Tourassi,
2012), which generates a theoretical ROC curve for a two-
alternative forced choice between two normal distribu-
tions. In other words, we treat Fig. 5c as the ROC curve
for human participants who classify regions of satellite
images as Btarget^ (contains gas stat ion) versus
Bdistractor^ (contains no gas stations). We use a standard
ROC fitting technique to derive the parameters of the target
and distractor distributions used for this task. The binormal
fit gives parameters α = 3.41 and β = 1.57, which relate to
the means and standard deviations of the target and
distractor distributions as follows:

α ¼ μdistractor−μtarget

σdistractor
; β ¼ σtarget

σdistractor
ð3Þ

The parameter α is equivalent to d′ when the standard
deviations of the two groups are the same, and the param-
eter β is the ratio of standard deviations for the two
groups. By setting the mean of one group to zero and

the standard deviation of the other group to 1, α and β
give the mean and standard deviation of the other group.
In this case, we set the target distribution to have μ = 0
and σ = β and the distractor distribution to have μ = α
and σ = 1. Note that this means the target distribution has
the lower mean (this is simpler for later computations), so
the signal used to distinguish targets from distractors can
be thought of as a Bdistractor-ness^ signal: image regions
with lower values are more likely to be targets, and a
guided search for targets would proceed from the lowest
ranked regions to the highest (left to right in Fig. 6).

Given these parameters, we can predict the search
curve for a display with any number of targets. We scale
the target and distractor distributions according to the
number of targets N: The target distribution has area N,
and the distractor distribution has area (ω - N). We define
the number of Bitems^ or samples in the display (ω) by
the size of the average zoom window. In our experiment,
the average zoom level was 5.29×, which was about 1/606
the area of the map (note that since 606 is not a square
number, we rounded to the nearest square number, 625,
when building the grid in the previous step). We can
model the guided search process as sampling image re-
gions from these overlapping distributions, in order, from
most target-like to least target-like (left-to-right in Fig. 6).
The expected targets at a given sample t is the cumulative
area under the target distribution function at the point
where the total cumulative area under both distributions
is t. We denote this point as γt. This cumulative area
represents the likelihood of collecting targets rather than
distractors: The more well-separated the two distributions,
the more targets should be collected in the earliest stages
of the search. The formula for this is as follows (Φ repre-
sents the cumulative distribution function of the standard
normal distribution):

E X tð Þ½ � ¼ NΦ
γt
β

� �
ð4Þ

The value γt can be calculated numerically from:

t ¼ NΦ
γt
β

� �
þ ω−Nð ÞΦ γt−αð Þ ð5Þ

The expected targets, and therefore the expected rate, de-
pends on the initial number of targets in the patch (N):
Regardless of search efficiency, if there are more targets avail-
able, more of them should be found at each point in the search.
In our task, searchers don’t know how many targets there will
be in each patch, so we treat N as a probability distribution
over possible numbers of targets:

E1 ¼
X
n¼0

nmax

p N ¼ nð Þ
E X tð Þ

���N ¼ n
h i

t þ τ
ð6Þ
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We use the responses from the BHow many gas stations^
guessing task as the prior p(N). We make a histogram of the
responses, smooth it with a Gaussian with standard deviation
1.5, truncate it at nmax and normalize it so it sums to 1. We
arbitrarily chose a value of 20 for nmax (17 was the highest
target count guess for any map).

Equation 6 could be used to compute the expected rate in
the patch at any sample t, assuming that the prior p(N) doesn’t
change as the forager searches the patch. This might be true
for certain tasks where the forager knows or can accurately
guess the number of targets in a patch before searching it, but
it probably isn’t true in this task because participants start with
only a rough idea of the number of gas stations in each map. A
smart searcher should update that estimate on the basis of their
experience searching the map. Therefore, we use a Bayesian
updating step to determine the probability on the number of
targets at sample t, p(N(t) = n), based on the observed search
result obs, a binary variable that represents whether or not the
searched location is a target. The posterior probability on N
(meaning: the updated beliefs about the true initial number of
targets) comes fromBayes’ rule: It’s the probability on N from
the previous sample times the likelihood of the search result
for a given number of targets:

p N tð Þ ¼ n
���obs� �

∝ p obs
���N t−1ð Þ ¼ n

� �
p N t−1ð Þ ¼ n
� �

ð7Þ

The likelihood of the search result can be determined from
the target and distractor distributions described previously.
Suppose the summed distribution is divided into ω samples,
each with area equal to 1. To determine the odds of finding a
target on a given sample t, we look at the area under the
distribution between γt-1 and γt (the cumulative distribution
between sample t and sample t-1, computed from Eq. 5). The

probability of finding a target on sample t is the area under the
target distribution within this window, and the probability of
not finding a target is 1 minus this value.

p target
���N t−1ð Þ ¼ n

� �
¼ N Φ

γt
β

� �
−Φ

γt−1
β

� �� �
ð8Þ

p no target
���N t−1ð Þ ¼ n

� �
¼ 1−p target

���N t−1ð Þ ¼ n
� �

ð9Þ

Finally, the threshold leaving time E0 is estimated from our
data: It’s the total targets over total clicks, averaged for each
participant. Since we measure time in the map by search
clicks, we also need to specify the travel time between maps
in clicks. As noted above, we use a travel time of two clicks.

To summarize, the potential value model assumes that peo-
ple make their decision to quit based on how many targets
they believe are in an image and how quickly they should be
able to find them.While searching, they update these beliefs in
a Bayesian fashion – so, for example, if targets are harder to
find than expected, people may conclude that the image con-
tains fewer targets than they initially thought. People use their
beliefs about the number of targets available and the expected
search efficiency to determine their expected rate of target
collection in that image, and when that expected rate falls
below the average rate for the task, they quit searching and
move on to the next image.

In our model, the prior on the number of targets in each
image and the expected search efficiency are set for each im-
age. On each trial, we use the image priors and an individual
participant’s search history – how many targets were found
and the time taken to find them – to estimate the participant’s
expected rate when quitting that trial. That search history is the
only individual participant data used in the model; all other
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Fig. 6 Signal detection model for guided search. We assume that people
have a priority map of the image in which regions are ranked from most
likely to contain targets to least likely to contain targets (x-axis). Search
involves sampling these regions in order from most to least likely. The
distributions represent the likelihood that a region is actually a target or
distractor. The area under the target curve is the number of image patches
that contain targets, and the area under the distractor curve is the number

of patches in the image without targets. The expected number of targets
after searching a given number of patches (t) can be determined by
finding the point on the x-axis where the sum of the cumulative
distributions (shaded area) equals t (we call this point γt) and taking the
cumulative distribution of the target curve up to that point (green shaded
area). (Color figure online)
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parameters are constants, or constant for a particular image
(e.g., the prior on the number of targets in that image). We
compare the predictions of this full model to the predictions of
MVT, which says that participants quit when their instanta-
neous rate, based on the time since collecting the last target,
falls below the average rate. For each participant on each trial,
we find the instantaneous rate upon quitting the trial by taking
one over the time elapsed since finding the last target (1/
GUT). Like the potential value model, MVT uses the individ-
ual participant’s search history in a single trial to compute
leaving times, but unlike the potential value model, it only
considers the last target collected. Finally, we compare the full
potential value model to a Bprior-only^ version, which uses
the prior on the number of targets in each image and the
expected search efficiency but does not update these beliefs
based on the participant’s search history. On each trial, this
model estimates the participant’s expected rate based on im-
age priors alone without using any information about the par-
ticipant’s search history on that trial.

The comparison of the three models is shown in Fig. 7.
Each panel in Fig. 7 plots the median instantaneous or expect-
ed rate when leaving a map against the average target collec-
tion rate for each participant in Experiment 1. The instanta-
neous rate, measured as 1/GUT in Fig. 7a, is not a bad predic-
tor of leaving time in the sense that that the median rate when
leaving the map is correlated with the average rate (r = 0.67, p
< .01). However, the prediction, while correlated, is not accu-
rate. The values are quite variable, and instantaneous rates are
virtually always higher than the average rates. Thus, this

model fails because people are leaving before the instanta-
neous rate drops to the average rate, against the prediction of
a standard marginal value account.

Figure 7b and c show results for two models based on the
potential value theorem. According to the potential value the-
orem, people should leave a map when their expected rate of
target collection falls to the average rate. Figure 7b shows a
Bprior-only^ model that only uses the prior on the number of
targets (from the guessing task) to predict the expected rate in
the map (Eq. 6). Figure 7c shows the Bfull model^ that uses
participants’ search results to update beliefs about the number
of targets after each click on the map (Eqs. 7–9). The expected
rate, as computed by the Bprior only^ model is less well cor-
related with the average rate than the marginal value model (r
= 0.56, p < .01), which suggests this model is a poorer pre-
dictor of when participants will leave an image. The full mod-
el, however, seems to predict leaving times rather well: The
median rate is well correlated with the participant’s average
rate (r = 0.82, p < .01). This means that, in general, partici-
pants leave a map when their expected rate (based on their
prior beliefs about the map and their search experience) falls to
their average rate, as predicted by potential value theorem.

Comparisons of themedian leaving rate versus average rate
from the three models are shown in Table 1. Mean difference
is computed by taking the difference between the model’s
leaving rate and average rate (predicted – observed) for each
participant. The mean and highest density intervals for this
distribution are computed using Bayesian estimation (BEST)
with the methods and default parameters described by
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exactly the average rate, then all points would lie along this line.
Dashed lines are the best linear fit to the data; R2 for each fit is given
on the graph
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Kruschke (2013). All of the models have mean differences
significantly above zero (the 95% highest density interval of
the mean does not include zero), but the full model has the
lowest mean difference. Planned comparisons using one-
group BEST show that the mean difference for GUT is signif-
icantly higher than the mean difference for the full model
(estimated mean difference = 0.0233, 95% highest density
interval, HDI, = [0.0158, 0.0315]) and the mean difference
for the prior-only model is significantly higher than the mean
difference for the full model (estimated mean difference =
0.0332, 95% HDI = [0.0239, 0.0404]). The mean difference
for the prior-only model is higher than the mean difference for
GUT (estimated mean difference = 0.0047, 95% HDI =
[0.000523 0.00884]).

We also used linear regression to predict the average leav-
ing times from the median instantaneous or expected rates.
This analysis does not assume that leaving rates should exact-
ly match average rates, but it does assume they should be
consistently, linearly related (e.g., participants might leave
when their rate is half the average). Akaike information crite-
rion (AIC) for each model is given in Table 1. This is a mea-
sure of model fit; lower values indicate a more probable mod-
el. The relative likelihood can be used to determine the signif-
icance of a difference between two models’ AIC: Relative
likelihood indicates the probability that the model with lower
AIC is actually better than a model with higher AIC. Relative
likelihood is computed as exp((AIC2 – AIC1)/2), where AIC1

is the lower AIC value. The GUT model is a significantly
better fit to the data than the prior-only model: The relative
likelihood of GUTcompared to the prior-only model is 4,722.
However, the full model is a significantly better fit than either
of these models: The relative likelihood of the full model
compared to GUT is 2.1E+8 and the relative likelihood of
the full model compared to the prior-only model is 1.0E+12.

Experiment 2

In Experiment 1, participants were not required to complete all
of the maps and could quit the task whenever they wanted.We
wished to determine if this freedom would produce different
behavior from a version of the experiment where one was
required to complete a fixed number of maps. Thus,
Experiment 2 was a replication of Experiment 1 in which we

equalized the number of trials per subject and number of sub-
jects per condition. Each participant viewed exactly 24 maps,
and all participants viewed the same 24 maps. In order to test
the generality of our model, the parameters, derived in
Experiment 1, were used to model performance in
Experiment 2.

Method

Participants

Thirty-six people participated in Experiment 2 on Amazon
Mechanical Turk; none had participated in Experiment 1.
The participant requirements and consent procedure were
identical to Experiment 1. In Experiment 2, participants re-
ceived a base payment of $6.00 for finding at least 30 gas
stations and a bonus of $0.20 for each gas station after the
first 30.

Stimuli

Twenty-four of the 50 maps from Experiment 1 were used in
Experiment 2. The maps were selected to give a more uniform
distribution of target counts: 1, 2, 3, 4, 5, 6, 7, or 9 targets
(three maps of each type).

Design and procedure

The viewing conditions, map interface, and search task proce-
dure were identical to Experiment 1, except that we did not
ask participants to give confidence ratings after marking po-
tential targets. Participants were randomly assigned to one of
the three viewing conditions (eight participants per condition),
and all participants were required to search all 24 maps.

Results and discussion

We dropped 13 trials over 60 minutes in length and 34 trials
with no clicks recorded, leaving 817 trials. Most (83%) of
these dropped trials were from participants in the magnifying
glass condition, but there were no outlier participants with an
unusually high number of dropped trials. As in Experiment 1,
we compared the three magnifier conditions in a by-subjects
analysis, shown in Fig. 8. There was no significant difference
in the total time per map, (F(2,33) = 1.79, p = 0.18), number of
search clicks per map, F(2, 33) = 0.53, p = .59, rate of clicks,
F(2, 33) = 1.44, p = .25, average recall, F(2, 33) = 1.65, p =
.21, average precision, F(2, 33) = 1.50, p = .23, or F score,
F(2, 33) = 1.26, p = .30. This replicates our nonsignificant
findings from Experiment 1: The different magnifying inter-
faces do not seem to affect search in this task.

To investigate leaving times in this task, we used the model
described in Experiment 1. We kept all of the model parameter

Table 1 Model comparison

Model Mean difference (95% HDI) AIC

Instantaneous rate (1/GUT) 0.0242 (0.0163, 0.033) -358.84

Expected rate from prior only 0.0313 (0.0233, 0.0392) -341.92

Expected rate from full model 0.00091 (0.0001, 0.0019) -397.21

Note.HDI = highest density interval; AIC = Akaike information criterion
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values (ω, α, β, τ) that we had computed from the
Experiment 1 data but used them to predict the search behav-
ior observed in Experiment 2. As in Fig. 7, Fig. 9 shows the
three different calculations of the median rate when quitting a
map plotted against the average rate for each participant in
Experiment 2. As in Experiment 1, instantaneous rate

(1/GUT) was least well correlated with average rate (r =
0.81, p < .01). Expected rate from priors only was better cor-
related (r = 0.85, p < .01), but, like the 1/GUT measure, the
priors only measure predicts that observers will leave a map
sooner than is the case. The expected rate based on priors and
search experience was very well correlated with the average
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rate (r = 0.93, p < .01). Mean difference and AIC for each
model are given in Table 2. Planned comparisons using one-
group BEST show that the mean difference for GUT is signif-
icantly higher than the mean difference for the prior-only
model (estimated mean difference = 0.057, 95% HDI =
[0.0287, 0.0845]) and the mean difference for the prior-only
model is significantly higher than the mean difference for the
full model (estimated mean difference = 0.021, 95% HDI =
[0.0152, 0.0274]). Comparing AIC values shows that the rel-
ative likelihood of the prior-only model compared to GUT is
8.4, so these models may not be significantly different
(Burnham, Anderson, & Huyvaert, 2011). The relative likeli-
hood of the full model compared to GUT is 6.6E+10 and the
relative likelihood of the full model compared to the prior-
only model is 7.9E+9, so the full model does seem be a sig-
nificantly better fit than the other two models.

As in Experiment 1, if we assume that people compute
expected rate using both prior beliefs about the map and their
experience when searching the map, then their decision on
when to quit each trial in this task appears to follow an optimal
foraging strategy: They quit when their expected rate of target
collection on a map falls to the average rate.

General discussion

We investigated foraging behavior in a task where people used
a magnifier interface to search for gas stations in large satellite
images and found that quitting times were well predicted by a
potential value version of the optimal foraging model. This
model predicts that a rate-maximizing forager should leave a
patch when the expected rate of target collection in the patch
falls below the average rate of target collection for the envi-
ronment. The expected rate of target collection can’t be direct-
ly observed by the forager. Foragers must estimate this rate
based on their beliefs about the likely number of targets in the
patch and the rate at which they should be able to find them.
Modeling these beliefs in simple, random search tasks is
straightforward, so most previous work has focused on this
type of search. Here, we show that the same models can be
extended to a highly guided search task where people do not
search randomly but prioritize regions or objects most likely
to be targets.

We describe two methods for estimating the expected rate
in a patch. In both cases, we assume that people have some
prior expectations about how many targets will be present in
an image. In the prior-only model, we assume that people only
use this prior and average search curve, which gives them an
estimate of how quickly they should be able to find targets in
the image. Across our experiments, this approach performs
about as well as the marginal value approach, which assumes
that leaving times are based on the time since last finding a
target. Like the marginal value account, the leaving times
estimated according to the prior-only account are quite vari-
able and generally come earlier than would be predicted by
optimal foraging. Our full model assumes that people also
update their beliefs about the number of targets in a display
as they search. Finding targets convinces them that a display is
more target-rich than expected, and not finding targets con-
vinces them that the display is poor. This model predicts peo-
ple’s leaving times quite well, which suggests that people are
combining all three sources of information (prior expecta-
tions, average search efficiency, and their own current search
results) to decide when to quit searching the images in this
task.

One concern with this task, and many other foraging ex-
periments, is that we can’t be certain what the participants
were trying to maximize, so it’s not clear what the Boptimal^
strategy would be. A participant who is trying to find all of the
targets, for example, would have a different threshold for quit-
ting a map than one who is trying to maximize the rate of
target collection. These experiments were run on Amazon’s
Mechanical Turk, a site where people do short computer-
based tasks for money. It seems likely that the average worker
on the site is trying to maximize his or her hourly wage, which
in our task would mean maximizing the rate of target collec-
tion. That said, there are many reasons why a worker might do
something nonoptimal in this kind of task. Participants may
have their own subjective cost functions that includes factors
other than hourly wage: For example, they might keep
searching a map longer than Boptimal^ because they really
dislike missing targets or because they enjoy doing the task
for its own sake. (About 40% of our participants left us feed-
back about the task and, perhaps surprisingly, the majority
described it as Bfun^ or Benjoyable.^) It’s also important to
note that, since the number of maps in our task was limited,
workers weren’t only making a choice between continuing to
search the current map or moving on to the next map. To some
extent, they were trading off time on the current map for time
they could spend on another Mechanical Turk task. So the true
threshold for a wage-optimizing worker is actually the average
rate of pay on the Mechanical Turk site as a whole (which is
difficult to determine, but probably similar to the average rate
of pay in our task).

Although this study focuses on a task with multiple targets,
the potential value approach is also applicable to standard

Table 2 Model comparison

Model Mean difference (95% HDI) AIC

Instantaneous rate (1/GUT) 0.0861 (0.0563, 0.117) -222.42

Expected rate from prior only 0.0300 (0.0221, 0.0377) -226.67

Expected rate from full model 0.00826 (0.00566, 0.0107) -272.26

Note.HDI = highest density interval; AIC = Akaike information criterion
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search tasks where there is only one target that is either present
or absent. In the standard case, where targets are randomly
present on half of trials and there are no image priors to guide
search, the potential value model prediction is similar to other
models of quitting time in search: People should give up the
search once their belief that a target is present (and the expect-
ed rate is greater than zero) falls below a threshold. This giving
up time would depend on the expected search efficiency, so it
would be longer for more difficult searches. In cases where
there are different priors on target presence for different im-
ages (e.g., search for real objects in natural scenes), the poten-
tial value model would generally predict longer search in im-
ages with higher priors.

One place where the potential value model may be useful is
in modeling prevalence effects in search. Previous work has
show that when search targets are uncommon, they are more
likely to be missed (Wolfe & Horowitz, 2007). In a potential
value model, that means that the prior on target presence is
low, and people may be able to decide that an image is target-
absent with less search evidence than they would need to
make the same decision when targets are more common.
However, the current study did not include any extreme ma-
nipulations of target prevalence, so further research would be
needed to determine whether this is the case.

In addition to looking at foraging behavior in this task, we
also examined the effect of different magnification interfaces.
We found that the task interface had no significant effect on
search performance, contrary to a previous study (Zhao et al.,
2009) which showed that an embedded magnifier is easier to
use than one which shows a zoomed-in view off to the side.
However, the search task in their study was very different:
They used a word search whereas we looked at search in
natural images. Our scenes had a coherent structure withmany
landmark features such as roads and rivers which probably
helped searchers navigate through the images and keep track
of what areas they had already searched. We also used a large,
salient footprint in the overview map to help users keep track
of the zoomwindow’s location in the side-by-side condition, a
feature which the Zhao et al. (2009) interface didn’t include.
This may have made the side-by-side magnifier easier to use
so that it was not significantly worse than the embedded
magnifiers.

The requirement to use the magnifier to confirm the pres-
ence of a target provides a novel way to look at guidance in a
complex, extended search task. The method works because
there is enough information in the scene to guide attention
but not enough to identify the target. This method could be
used studies of other complex search stimuli, giving us new
insight into the way that our knowledge interacts with a stim-
ulus in order to make search reasonably efficient.
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