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Multimodal Large Language Models
 
Accept text and image as input, produce text as output

Typical architecture consists of:
  Pretrained large language model
  Pretrained image encoder (e.g., CLIP [4]), trained on image-text alignment), which converts image pixels
    into a high-level abstract representation
  Interface model which converts the image abstraction into language-like tokens

Models are trained on large image-text datasets:
  Pretraining on image captioning (input image, output caption)
  Instruction tuning on a variety of visual question answering tasks (input image and query, output answer)
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Typical architecture of an Multimodal Large Language Model for vision tasks

Introduction
 
Multimodal Large Language Models (MLLMs) are state of the art for visual interpretation tasks such as
describing images and answering questions based on photos or diagrams. MLLMs even show emergent
behavior such as interpreting the humor in memes [1].

Despite strong performance on these tasks, MLLMs struggle with more abstract visual reasoning tasks [2]. The
failures often suggest problems with basic perception: lack of shape understanding, inability to locate objects
or understand their spatial relationships.

How well can MLLMs perform visual cognition tasks?

Hard task for MLLM: sample task from the Abstract Reasoning
Corpus (ARC) [3].  The task is to complete the test pair following

the pattern shown in the training pairs.

?

Training pairs Test pair

Conclusion
 
Despite excellent performance on recognition tasks, Multimodal Large Language Models (MLLMs) perform poorly on a range of visual cognition tasks
that are easy for humans. They also show odd idiosyncrasies, like being able to recognize when objects are �ipped upside down but not left-right.

MLLMs learn to translate images into a language-like representation, which may not be well-suited for visuospatial tasks or tasks which require “visual
routines” [5]. At the same time, these results suggest that fundamental visual abilities, like contour completion, may not be strictly necessary for high-
level object recognition and understanding, since MLLMs can recognize objects well despite lacking these fundamental abilities.

Easy task for MLLM: Describe this image.
(GPT-4o: The image shows a stylized drawing

of a bunny rabbit.)

Performance on Visual Cognition Tasks
 
Model: GPT-4o, “zero shot” performance (no additional training)
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